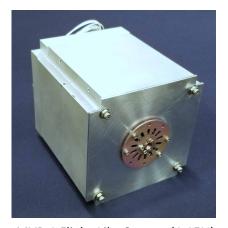


MONOFILAMENT VAPORIZATION PROPULSION (MVP) SYSTEM SOLID INERT POLYMER PROPELLANT SEPTEMBER 2020

The CUA Monofilament Vaporization Propulsion (MVP) system is an electrothermal thruster that uses a space-rated plastic as propellant. This approach enables CUA to deliver competitive delta-V to CubeSat customers at a substantially lower cost and dramatically lower risk profile than traditional liquid or gaseous propulsion systems having pressure vessels. In a 1U form factor, MVP provides a total impulse of 271 N-s with a peak continuous thrust of 4.5 mN. A flight-like MVP passed environmental and subsystem qualification testing on a NASA Phase II SBIR program.

TVDICAL	ODEDATION	A A I D I A	ITEDE A CE
IYPICAL	OPFRATION	ANI) II	NIFRFALF


MVP draws from 3D printing technology to feed propellant. A preheat is required before firing (~3 minutes), but once warmed the "ready" state is maintained with minimal power draw and thermal loading. When firing, the system uses approximately 45 W (duty cycled average is only 13.5 W). Propellant fiber is mechanically drawn from a fixed spool into the extruder where it evaporates. Propellant metering is


System Information			
Propulsion system volume	1U		
Volume Envelope	9.0 x 9.0 x 11.6 cm ³		
System lifetime	Not propellant limited		
Spacecraft temperature range	Not propellant limited		
Propellant	POM, gaseous MW = 30		
Propellant Mass	419 g		
Total propulsion wet mass	1.04 kg		
Nominal mass flow rate	7.0 mg/s		
Total thrust time	16.6 hr		
Specific Impulse	66 s		
Primary Thrust	4.5 mN		
Total impulse	271 N-s		
Spacecraft ΔV , M(initial) = 4 kg	72 m/s		
Propulsion power when firing	45 W		
Propulsion power (avg. duty cycled)	13.5 W		
TRL	6		

precise, but evaporation time results in "softer" starts and stops. As a consequence, minimum impulse bit is inherently much larger than gaseous propulsion systems with fast-actuating valves; this represents the largest trade-off for the reduced system cost, complexity, and risk.

Developmental 1U MVP system interface:

- Unregulated battery voltage line (for resistojet and preheat, will be stepped down)
- Regulated 12 V line (<2 W when firing)
- I²C communication protocol (other options available on request)
- Mounting interface designed for typical CubeSat via external enclosure adaptable to customer requirements

MVP-1 Flight-Like System (1.15U)