8 Channel, 12 Bit Data Acquisition System With $\mu \mathrm{P}$ Interface

HS9410 Series
Data Converter Line

FEATURES

Complete 8 channel, 12-bit data acquisition system with MUX, S/H, REF, clock and threestate outputs
Full 8- or 16-bit microprocessor bus interface
Guaranteed linearity over temperature
High throughput rate: 25 kHz
Hermetic 28-pin
Low Power: 400 mW

DESCRIPTION

The HS9410 Series is a complete 8-channel, micro-processor-compatible, 12-bit data acquisition system with all the interface logic to connect directly to 8 - or 16-bit microprocessor buses. It is contained in a 28-pin DIP and includes an 8-channel multiplexer, a sample-and-hold amplifier, and a 12-bit A/D converter along with the control logic needed to perform a complete data acquisition function. System throughput rate is 25 kHz for full rated accuracy.

The analog-to-digital converter section contains the HS574 12-bit ADC. The HS9410 Series is offered in a hermetically sealed package for use over a wide temperature range and for MIL-STD-883 requirements.

The HS9410 Series operates from $\pm 15 \mathrm{~V} *$ and +5 V with a total power consumption of 400 mW . To take advantage of the 28 -pin package, the user must specify an input range of 0 to $+10 \mathrm{~V}, \pm 5 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$ when ordering. Four basic product grades are available; J and K models are specified over a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ while the S and T models are specified over an extended temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Full screening to MIL-STD-883C and processing in accordance with Method 5008.1 is available with models specified as "B."

* $\pm 12 \mathrm{~V}$ operation possible; consult factory for further information.

SPECIFICATIONS

(Typical@ $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\text {CC }}=+\mathrm{V}_{\text {EE }}=-15 \mathrm{~V} . \mathrm{V}_{\text {LOGIC }}=+5 \mathrm{~V}$, unless otherwise specified $)$				
MODEL	HS 941 XJ	HS 941XK	HS 941XS	
TRANSFER CHARACTERISTICS				
Resolution	$12-$ Bits			
Number of Channels	8 Single-Ended			
Throughput Rate	25 kHz			

ANALOG INPUTS

Input Ranges ${ }^{1}$ (Specified as a sullix in the model number. See Ordering Guide.)	
HS9410	0 to +10 V
HS9411	$\pm 5 \mathrm{~V}$
HS9412	$\pm 10 \mathrm{~V}$
Input Bias Current per Channel	
$\mathrm{I}_{\mathrm{IB}} 25^{\circ} \mathrm{C}$	$\pm 10 \mathrm{nA}$ typ
$\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Input Impedance	$10^{10} \mathrm{II} 100 \mathrm{pf}$
ON Channel	$10^{10} \mathrm{II} 10 \mathrm{pf}$
OFF Channel	
DIGITAL INPUTS	

Logic Inputs			
R/C. A_{0}			
$V_{I H} \mathrm{~min}$	+2.4V		
$\mathrm{V}_{\text {IH }} \max$	$+5.5 \mathrm{~V}$		
$\mathrm{V}_{\text {IL }}$ max	$+0.8 \mathrm{~V}$		
$\mathrm{V}_{\text {IL }} \min$	-0.5V		
$\mathrm{I}_{\text {IL }}$ max	$\pm 5 \mu \mathrm{~A}$ max		
$\mathrm{I}_{\text {IL }} \max$	$\pm 5 \mu \mathrm{~A}$ max		
Multiplexer inputs			
\checkmark max	+0.8V		
$V^{\text {IL }}$ min	+4.0V	$+4.0 \mathrm{~V}^{2}$	$+4.0 \mathrm{~V}^{2}$
Input Capacitance (All Digital Inputs)	5 pF typ		
Minimum Start Pulse			
R/C-Negative	50ns		
SIGNAL DYNAMICS			

Conversion Time			
12-Bit Conversion	$25 \mu \mathrm{~s}$ max		
8-Bit Conversion	$9 \mu s$ max		
DIGITAL OUTPUTS			
Logic Outputs			
$\mathrm{DB}_{11}-\mathrm{DB}_{0}$. STS			
Logic 0	+0.4 V max. $\mathrm{I}_{\mathrm{OL}} 1.6 \mathrm{~mA}$		
Logic 1	+2.4 V min. $\mathrm{I}_{\mathrm{OH}} 0.5 \mathrm{~mA}$		
Leakage (High 2 Slate)	$\pm 5 \mu \mathrm{~A}$ typ ($\mathrm{DB}_{11} \mathrm{DB}_{0}$ only)		
Capacitance	5 FF typ		
Output Code Configuration			
Unipolar	Positive True Binary		
Bipolar	Positive True Offset Binary		
POWER SUPPLY			
$V_{\text {LOGIC }}$	+4.5 to +5.5 Volts@11mA max		
$\mathrm{V}_{\text {CC }}$	+13.5 to +16.5 Volts@35mA max		
$v_{E E}$	-13.5 to -16.5 Volts@15mA max		
Power Dissipation	700mW typ.,1W max.	700mW typ., 1W max.	700mW typ., 1W max.
Rejection ${ }^{3}$			
V LOGIC	0.002\% /\% lyp. 0 005\% /\% max		
$V_{\text {CC }}$	0.002\% /\% lyp. 0 005\%/\% max		
$V_{\text {EE }}$	0.002\% /\% lyp. 0 005\% /\% max		
ACCURACY			
Linearity Error (\% of F.S.R. max)	$\pm 0.025 \pm 0.012$	± 0.025	± 0.012
Offset ${ }^{4}$			
Unpolar (\% of F.S.R. max)	± 0.05		
Bipolar (\% of F.S.R. max)	$\pm 0.25 \quad \pm 0.01$	± 0.25	± 0.01
Gain ${ }^{4}$ (\% of F.S.R. max)	± 0.3		

STABILITY

Linearity (ppm $/{ }^{\circ} \mathrm{C} \mathrm{max)}$	± 0.5	± 0.5	± 0.25
Unipolar Offset (ppm $/{ }^{\circ} \mathrm{C}$ max)	± 10	± 5	± 25
Bipolar Offset (ppm $/{ }^{\circ} \mathrm{C}$ max)	± 25	± 20	± 25
Gain (Scale Factor) $\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right.$ max)			± 20
TEMPERATURE RANGE			
Operating	0° to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

NoTES
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
NOTES
1 For J and K models, positive analog input voltage should not exceed $\mathrm{V}_{\mathrm{CC}}-4$ volts. Exceeding $\mathrm{V}_{\mathrm{CC}}-4$ volts can cause an OFF channel to be turned ON. Negative input voltages and input voltages for S and T models may go to supply voltages. Input voliages exceeding these values will not result in permanent damage as long as the absolute maximum ratings are not exceeded. 2.1 K pullup to +5 V recommended for $\mathrm{MA}_{0}-\mathrm{MA}_{2}$ when driven by TTL 3.Maximum change over rated supply voltage. 4. Externally adjustable to zero. See Applications Information.
*Specifications same as HS 9410J

PIN ASSIGNMENTS

PACKAGE OUTLINE

Dimensions shown in inches and (mm)

PIN	FUNCTION	PIN	FUNCTION
1	D8,o/DB2	28	DB9/DB $_{1}$
2	DBn(MSB)/DB3	27	DB $_{8} / \mathrm{DB}_{0}$
3	Ao	26	DB $_{7}$
4	R/C	25	DB $_{6}$
5	GROUND	24	DB $_{5}$
6	VLOGIC	23	08_{4}
7	VEE	22	STS(STATUS)
8	MUX ADDRESS A 2	21	GAIN
9	MUX ADDRESS A	19	20
10	MUX ADDRESS A	OFFSET	
11	INPUT CH 1	19	Vcc
12	INPUT CH 2	18	INPUT CH 5
13	INPUT CH 3	17	INPUT CH 6
14	INPUT CH 4	16	INPUT CH 7

ORDERING INFORMATION

| Model
 Number1 | Input
 Range | System
 Accuracy
 $(\%$ FSR) | Full Scale
 T.C.
 $\left(p p m /{ }^{\circ} \mathrm{C}\right)$ | Temp.
 Range |
| :--- | :---: | :---: | :---: | :---: | :---: |
| HS 94XXJ | | ± 0.025 | 50.0 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| HS 94XXK | | ± 0.012 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | |
| HS 94XXS | SEE | ± 0.025 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | |
| HS 94XXT | NOTE1 | ± 0.012 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | - |
| HS 94XXS/B | | ± 0.025 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | - |
| HS 94XXT/B | | 50.012 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | - |

1.

Add letter suffix as required above

ABSOLUTE MAXIMUM RATINGS
$V_{C C}$ to Common GND \qquad .0 to +16.5 V
V_{EE} to Common GND 0 to -16.5 V
$V_{\text {Logic }}$ Common GND \qquad .. 0 to +7 V
Control Inputs ($\mathrm{A}_{0+} \mathrm{R} / \mathrm{C}$) to
Common GND-0.5V toV LOGIC +0.5 V
Power Dissipation..1.3W
Lead Temperature, Soldering........... $300^{\circ} \mathrm{C}$, 10 Sec
Maximum Input Voltage.......................... $\mathrm{V}_{\mathrm{CC}}+20 \mathrm{~V}$
Minimum Input Voltage........................... $\mathrm{V}_{\mathrm{EE}}-20 \mathrm{~V}$
Analog Input Maximum Current................. 25 mA

